NEWS-G: Search for Light Dark Matter with Spherical Proportional Counters

Konstantinos Nikolopoulos University of Birmingham

March 18, 2021 CPAD Instrumentation Frontier Workshop 2021, Stony Brook, USA

Dark Matter

- Evidence from gravitational interactions over many distance scales
 - Rotational curves
 - Gravitational lensing
 - Cosmic microwave background
 - Large scale structure formation
- Corresponds to 85% of the matter content of the universe

Dark Matter

Evidence from gravitational interactions over many distance scales

- Rotational curves
- Gravitational lensing
- Cosmic microwave background
- Large scale structure formation
- Corresponds to 85% of the matter content of the universe

Dark Matter Particle (X^0)

 X^0 mass: m = ?

 X^0 spin: J=?

 X^0 parity: P = ?

 X^0 lifetime: $\tau = ?$

 X^0 scattering cross-section on nucleons: ?

 X^0 production cross-section in hadron colliders: ?

 X^0 self-annihilation cross-section: ?

Dark Matter

Evidence from gravitational interactions over many distance scales

- Rotational curves
- **Gravitational lensing**
- Cosmic microwave background
- Large scale structure formation
- Corresponds to 85% of the matter content of the universe

Dark Matter Particle (X^0)

 X^0 mass: m = ?

 X^0 spin: J=?

 X^0 parity: P = ?

 X^0 lifetime: $\tau = ?$

 X^0 scattering cross-section on nu

 X^0 production cross-section in hadron

 X^0 self-annihilation cross-section: ?

Wide field of possibilities!

Dark Sector Candidates, Anomalies, and Search Techniques

Wide field of possibilities!

Dark Sector Candidates, Anomalies, and Search Techniques

Dark Matter Direct Detection

Dark Matter Direct Detection

Dark Matter Direct Detection

- Many handles to confirm possible signals
 - Recoil energy distribution
 - Seasonal variation of flux
 - Directional detection

Direct Detection: Landscape

Direct Detection: Landscape

Direct Detection: Landscape

New Experiment With Spheres - Gas

9th collaboration meeting, December 2020

- NEWS-G Collaboration
- ▶ 5 countries
- ▶ 10 institutes
- ▶ ~40 collaborators
- Three underground laboratories
 - ▶ SNOLAB
 - Laboratoire Souterrain de Modane
 - Boulby Underground Laboratory

Direct Detection: Light Dark Matter

Favourable recoil energy distribution for lighter targets

For lighter elements more of the recoil energy turns into detectable signal

See talks by Marie Vidal and Jean-Francois Caron

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Time [µs]

NEWS-G: Prototype at Modane

- NOSV Copper vessel (Ø60 cm)
- Equipped with a Ø6.3 mm sensor
- Chemically cleaned several times for Radon deposit removal

NEWS-G: First results

NEWS-G: First results

Exposure: Larger volume and higher operating pressure Backgrounds: Higher purity materials

NEWS-G at SNOLAB

K. Nikolopoulos / 18 March 2021 / NEWS-G: Search for light DM with SPCs

Total muon flux $[cm^{-2}s^{-1}]$

UNIVERSITY^{OF} BIRMINGHAM

NEWS-G at SNOLAB

Ø140 cm 4N Copper (99.99% pure) Assembled at LSM

NEWS-G at SNOLAB

Ø140 cm 4N Copper (99.99% pure) Assembled at LSM

Increasing Target Mass

Instrumentation breakthrough

Single anode: Drift and Amplification fields are connected

Instrumentation breakthrough

Single anode: Drift and Amplification fields are connected

- ACHINOS: Multi-anode sensor
 - Multiple anodes placed at equal radii
 - Decoupling drift and amplification fields
 - Opportunity: individual anode read-out

Αχινός (greek. sea urchin)

Instrumentation breakthrough

Single anode: Drift and Amplification fields are connected

- ACHINOS: Multi-anode sensor
 - Multiple anodes placed at equal radii
 - Decoupling drift and amplification fields
 - Opportunity: individual anode read-out

UNIVERSITY^{OF} BIRMINGHAM

Fiducialisation

Birmingham simulation framework, combining strengths of Geant4 and Garfield++

- Reading out individual ACHINOS anodes: position of interaction can be reconstructed
- First tests: Separate the anodes in two electrodes "Near" and "Far" (from the rod)
 - Asymmetry of pulse amplitudes: zenith angle
 - Pulse rise-time: radius

Event reconstruction

Individual anode read-out: track reconstruction

60-anodes (truncated icosahedron)

Reducing Backgrounds

Higher purity materials

- Copper common material for rare event experiments
 - Strong, pure, inexpensive
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Backgrounds
 - ▶ Cosmogenic and ²³⁸U/²³²Th decay chain

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Higher purity materials

- Copper common material for rare event experiments
 - Strong, pure, inexpensive
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Backgrounds
 - Cosmogenic and ²³⁸U/²³²Th decay chain

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Higher purity materials

- Copper common material for rare event experiments
 - Strong, pure, inexpensive
 - No long-lived isotopes (67Cu t_{1/2}=62h)
- Backgrounds
 - Cosmogenic and ²³⁸U/²³²Th decay chain

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

22 y

Higher purity materials

- Copper common material for rare event experiments
 - Strong, pure, inexpensive
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Backgrounds
 - Cosmogenic and ²³⁸U/²³²Th decay chain

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Copper Electroplating

Internal shield:

- add layer of extremely radio-pure copper
- ≥ 500µm deposited in 2 weeks (~36µm/day)

First large-scale underground radio-pure electroformation

Crucial for next generation experiments!

Nuclear Inst. and Methods in Physics Research, A 988 (2021) 164844

NIM A 988 (2021) 164844

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Copper electroplating for background suppression in the NEWS-G experiment

- L. Balogh a, C. Beaufort b, A. Brossard a, R. Bunker c, J.-F. Caron a, M. Chapellier a,
- J.-M. Coquillat ^a, E.C. Corcoran ^d, S. Crawford ^a, A. Dastgheibi Fard ^b, Y. Deng ^e, K. Dering ^a,
- D. Durnford e, G. Gerbier J. I. Giomataris f, G. Giroux P. Gorel g,h,i, M. Gros f, P. Gros a,
- O. Guillaudin b, E.W. Hoppe c, I. Katsioulas J, F. Kelly d, P. Knights f.j,*, L. Kwon d, S. Langrock h,
- P. Lautridou k, R.D. Martin J.-P. Mols J. J.-F. Muraz K.-F. Navick J. T. Neep J. K. Nikolopoulos J.
- P. O'Brien e, R. Owen j, M.-C. Piro e, D. Santos b, G. Savvidis a, I. Savvidis J, F. Vazquez de Sola Fernandez a, M. Vidal a, R. Ward j, M. Zampaolo b

(NEWS-G Collaboration)

S. Alcantar Anguiano ^c, I.J. Arnquist ^c, M.L. di Vacri ^c, K. Harouaka ^c, K. Kobayashi ^{m,n,1}, K.S. Thommasson ^c

- Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
- ^b LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
- ^c Pacific Northwest National Laboratory, Richland, WA 99352, USA
- d Chemistry & Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- f IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ⁸ Department of Physics and Astronomy, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada ^h SNOLAB, Lively, Ontario, P3Y 1N2, Canada
- ¹ Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada ¹ School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
- k SUBATECH, IMT-Atlantique, Université de Nantes/IN2P3-CNRS, Nantes, France
- ¹ Aristotle University of Thessaloniki, Thessaloniki, Greece
- ^m Kamioka Observatory, ICRR, University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, Japan

ⁿ Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

In-situ neutron background measurements

- Neutrons: critical background in DM searches
- Underground measurements scarce
- Nitrogen gas
 - \triangleright 14N+n→14C+p + 625 keV

In-situ neutron background measurements

- Spherical Proportional Counter
 - ≥ Ø 30 cm
- N₂ gas
- Multi-anode sensor
- ▶ 11 anodes
- Ø 1mm
- 2 channel read-out

Installation at SNOLAB

NEWS-G at SNOLAB: Physics Potential

Data-taking is starting!

Fully electroformed detectors

Fully electroformed detectors

Intact underground electroformed spheres

- Scale model to be constructed this summer
- Ø140cm detector later this year!

Fully electroformed detectors

Intact underground electroformed spheres

- Scale model to be constructed this summer
- Ø140cm detector later this year!

J)

Reaching the neutrino floor

Reaching the neutrino floor

Scale volume ×10 and improve shielding

DarkSPHERE

Volume ×10: Ø300cm intact underground electroformed spherical proportional counter Shielding: Full water shielding option and water/lead option

Configuration	Photons	Neutrons
	[dru]	[dru]
Water (2 m)	8	0.002
Water (3.5 m)	0.002	< 0.002
Water-lead	0.005	0.002

Assuming installation at Boulby

Operation with 5 bar He:C₄H₁₀ (90%:10%) (27 kg) K. Nikolopoulos / 18 March 2021 / NEWS-G: Search for light DM with SPCs

Multi-physics platform:

- Dark matter
- 0vββ searches
- Neutrino physics

Multi-physics platform:

- Dark matter
- 0vββ searches
- Neutrino physics

Multi-physics platform:

- Dark matter
- 0vββ searches
- Neutrino physics

Coherent Elastic v-Nucleus Scattering

- CEvNS opens a window to investigation non-standard neutrino interactions
 - ▶ First observations by COHERENT in NaI (2017) and Ar (2020)
 - ▶ Unique complementarity with DM searches as sensitivity reaches the neutrino floor
- NEWS-G3: A low-threshold low-background sea-level facility
 - ▶ Environmental and cosmogenic background studies towards reactor CEvNS studies
 - ▶ Shielding: Layers of pure copper, polyethylene, and lead, with active muon veto
 - Commissioning in 2021

Summary

NEWS-G probes uncharted DM territory using Spherical Proportional Counters

- Significant instrumentation advances enable exploration
 - ▶ ACHINOS, electroformation, ...
- Several detectors scheduled for the coming years
- Eventually sensitivity could reach neutrino floor

Many physics opportunities: Nuclear (spin dependent and independent) and electron recoils, CEvNS, axions

K. Nikolopoulos / 18 March 2021 / NEWS-G: Search for light DM with SPCs

UNIVERSITYOF

BIRMINGHAM